On resolvable Steiner 2-designs and maximal arcs in projective planes

نویسنده

  • Vladimir D. Tonchev
چکیده

A combinatorial characterization of resolvable Steiner 2-(v, k, 1) designs embeddable as maximal arcs in a projective plane of order (v − k)/(k − 1) is proved, and a generalization of a conjecture by Andries Brouwer [9] is formulated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On maximal arcs in projective Hjelmslev planes over chain rings of even characteristic

In this paper, we prove that maximal (k, 2)-arcs in projective Hjelmslev planes over chain rings R of nilpotency index 2 exist if and only if charR = 4. © 2005 Elsevier Inc. All rights reserved.

متن کامل

Groups of Maximal Arcs

Apart from hyperovals and their duals there are only three classes of maximal arcs known in Desarguesian projective planes. Two classes are due to J. A. Thas and one to R. H. F. Denniston. In this paper collineation stabiliser and isomorphism problems for those maximal arcs in Desarguesian projective planes are examined. The full collineation stabilisers of the known maximal arcs are calculated...

متن کامل

Maximal Resolvable Packings and Minimal Resolvable Coverings of Triples by Quadruples

Determination of maximal resolvable packing number and minimal resolvable covering number is a fundamental problem in designs theory. In this article, we investigate the existence of maximal resolvable packings of triples by quadruples of order v (MRPQS(v)) and minimal resolvable coverings of triples by quadruples of order v (MRCQS(v)). We show that an MRPQS(v) (MRCQS(v)) with the number of blo...

متن کامل

New arcs in projective Hjelmslev planes over Galois rings

It is known that some good linear codes over a finite ring (R-linear codes) arise from interesting point constellations in certain projective geometries. For example, the expurgated Nordstrom-Robinson code, a nonlinear binary [14, 6, 6]-code which has higher minimum distance than any linear binary [14, 6]-code, can be constructed from a maximal 2-arc in the projective Hjelmslev plane over Z4. W...

متن کامل

Maximal Arcs in Desarguesian Planes

A ( k , n ) a r c in a projective plane is a set of k points, at most n on every line. If the order of the plane is q, then k < 1 + (q + 1) (n 1) = qn q + n with equality if and only if every line intersects the arc in 0 or n points. Arcs realizing the upper bound are called maximal arcs. Equality in the bound implies tha t n lq or n = q + l . If 1 < n < q, then the maximal arc is called non-tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Des. Codes Cryptography

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2017